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Abstract. In a recent paper, Domokos and Kolumbán introduced variational inequalities
with operator solutions to provide a suitable unified approach to several kinds of variational
inequality and vector variational inequality in Banach spaces. Inspired by their work, in this
paper, we further develop the new scheme of vector variational inequalities with operator
solutions from the single-valued case into the multi-valued one. We prove the existence of
solutions of generalized vector variational inequalities with operator solutions and general-
ized quasi-vector variational inequalities with operator solutions. Some applications to gen-
eralized vector variational inequalities and generalized quasi-vector variational inequalities
in a normed space are also provided.
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1. Introduction

Since Giannessi [7] introduced the vector variational inequality, (shortly,
VVI) in a finite dimensional Euclidean space, many authors have intensively
studied (VVI) and its various extensions [1,8,9,12, see also the references
therein] in abstract spaces. Several authors have investigated relationships
between (VVI) and vector optimization problems, vector complementarity
problem [2,11].

In a recent paper, Domokos and Kolumbán [5] gave an interesting
interpretation of variational inequalities (VI) and (VVI) in Banach space
settings in terms of variational inequalities with operator solutions (in
short, OVVI). They first obtained an existence theorem of the solutions
of (OVVI) using Fan’s KKM Lemma [6], and then presented a general
version of Yu and Yao [13, Theorem 3.3] in a Banach space as a main
application and gave some other applications such as the solvability of
variational inequality defined on Hausdorff topological vector space, and
that of variational inequality on L∞(�). However, they dealt with only the
single-valued operator.

Domokos and Kolumbán [5] designed (OVVI) to provide a suitable uni-
fied approach to several kinds of (VI) and (VVI) problems in Banach
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spaces, and successfully described those problems in a wider context of
(OVVI). Inspired by their work, in this paper, we further develop the new
scheme of (OVVI) from the single-valued case into the multi-valued one,
and search some applications, from a theoretical point of view, to exploit
the framework of (OVVI). To be more specific, we establish a multi-valued
version of (OVVI) called the generalized vector variational inequality with
operator solutions (in short, GOVVI). Also we introduce the quasi-version
of (GOVVI) called the generalized vector quasi-variational inequality with
operator solutions (in short, GOQVVI). As an application of (GOVVI), we
provide a noncompact generalization of Konnov and Yao [9, Theorem 3.1]
concerning a generalized (VVI) in a normed space (not necessarily Banach
space). In addition, we deal with an existence theorem on (VVI) concerned
with upper semicontinuity of multifunction instead of pseudo-monotonic-
ity. This result is similar to Lai and Yao [10, Corollary 2.3]. As far as
(GOQVVI) is concerned, we provide an existence of solution for a general-
ized vector QVI in a normed space (not necessarily Banach spaces). So we
mainly focus on dealing with the existence of solutions of (GOVVI) and
(GOQVVI) and their applications to (GVVI) and (GVQVI) in a normed
space. In this respect, our work may be regarded as a first step toward
the complete exploitation of the scheme of (OVVI) due to Domokos and
Kolumbán [5].

As basic tools to obtain main results, we use a Fan–Browder type fixed
point theorem due to Park [12, Theorem 5] and existence theorem of equi-
librium for 1-person game due to Ding–Kim–Tan [4].

2. Preliminaries

Let E, F be Hausdorff topological vector spaces, and let X be a nonempty
convex subset of E. A nonempty subset P of E is called a convex cone if

λP ⊂P for all λ>0 and P +P =P.

Let C1:X⇒F be a multifunction such that for each x ∈X, C1(x) is a con-
vex cone in F with intC1(x) �= ∅ and C1(x) �=F . Let L(E,F ) be the space
of all continuous linear operators from E to F and T1:X ⇒ L(E,F ) a
multifunction.

Then T1 is said to be

(1) C1-pseudomonotone if for any x, y ∈X and for any s ∈T1(x), we have

〈s, y −x〉 /∈−intC1(x) implies 〈t, y −x〉 /∈−intC1(x) for all t ∈T1(y); and
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(2) generalized hemicontinuous if for any x, y ∈ X and α ∈ [0,1], the multi-
function

α �→ 〈T1(x +α(y −x)), y −x〉
is upper semicontinuous at 0+, where

〈T1(x +α(y −x)), y −x〉={〈s, y −x〉 | s ∈T1(x +α(y −x))}.
Now we pay our attention to generalized variational inequalities with

operator solutions (in short, GOVVI). From now on, unless otherwise
specified, we work under the following settings.

Let X′ be a nonempty convex subset of L(E,F ) and T :X′ ⇒ E be a
multifunction. Let C:X′ ⇒ F be a multifunction such that for each f ∈
X′, C(f ) is a convex cone in F with 0 /∈C(f ). Then (GOVVI) is defined
as follows:

Find f0 ∈X′such that ∀f ∈X′,∃x ∈T (f0) with〈f −f0, x〉 /∈C(f0).

(GOVVI)

When T is single-valued, (GOVVI) reduces to (OVVI) due to Domokos
and Kolumbán [5]. As pointed out in [5], the notation (GOVVI) is moti-
vated by the fact that the solutions are sought in the space of contin-
uous linear operators. We also introduce the quasi-version of (GOVVI)
called the generalized quasi-variational inequalities with operator solutions
(in short, GOQVVI).

Let X′ be a nonempty convex subset of L(E,F ) and T :X′ ⇒ E be a
multifunction. Let C:X′ ⇒ F be a multifunction such that for each f ∈
X′, C(f ) is a convex cone in F with 0 /∈C(f ), and let A:X′ ⇒X′ be a mul-
tifunction. Then (GOQVVI) is defined as follows:

Find f0 ∈X′ such that f0 ∈ cl A(f0) and

∀f ∈A(f0), ∃x ∈T (f0) with 〈f −f0, x〉 /∈C(f0). (GOQVVI)

In regard to monotonicity and continuity of T , two analogous definitions
to those of T1 in the above are necessary; T :X′ ⇒E is said to be

(1)′ C-pseudomonotone if for any f, g ∈X′ and for any s ∈T (f ), we have

〈g −f, s〉 /∈C(f ) implies 〈g −f, t〉 /∈C(f ) for all t ∈T (g); and

(2)′ generalized hemicontinuous if for any f, g ∈X′ and α ∈ [0,1], the multi-
function

α �→ 〈g −f,T (f +α(g −f ))〉
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is upper semicontinuous at 0+, where

〈g −f,T (f +α(g −f ))〉={〈g −f, s〉 | s ∈T (f +α(g −f ))}.

In order to prove our main result, we need the following fixed point the-
orem which is a particular form of Park [12, Theorem 5].

LEMMA 2.1. Let X be a nonempty convex subset of a real (not necessar-
ily) Hausdorff topological vector space E, K a nonempty compact subset of
X. Let A, B :X ⇒X be two multifunctions. Suppose that

(i) for each x ∈X, Ax ⊂Bx;
(ii) for each x ∈X, Bx is convex;

(iii) for each x ∈K, Ax is nonempty;
(iv) for each y ∈X, A−1y ={x ∈X |y ∈Ax} is open in X; and
(v) for each finite subset N of X, there exists a nonempty compact convex

subset LN of X containing N such that for each x ∈LN\K, Ax ∩LN �=∅.

Then B has a fixed point x0; that is, x0 ∈Bx0.

We also need the following lemma, which is a special case of Theorem 2
of Ding-Kim-Tan [4].

LEMMA 2.2. Let � = (X,A,P ) be an 1-person game such that

(1) X is a nonempty compact convex subset of a Hausdorff topological vec-
tor space,

(2) A:X ⇒X is a multifunction such that for each x ∈X, A(x) is nonempty
convex and for each y ∈X, A−1(y) is open in X,

(3) the multifunction cl A:X ⇒X is upper semicontinuous,
(4) the multifunction P :X ⇒ X is such that P −1(y) is open in X for each

y ∈X,
(5) for each x ∈ X, x /∈ coP (x), where coP (x) denotes the convex hull of

P(x). Then � has an equilibrium choice x̂ ∈X; i.e.,

x̂ ∈ cl A(x̂) and A(x̂)∩P(x̂)=∅.

3. Generalized Vector Variational Inequality with Operator Soultions

We begin with the following lemma to get the main result.

LEMMA 3.1. Let T:X′ ⇒E be a C-pseudomonotone and generalized hemi-
continuous multifunction with T (f ) �= ∅ for all f ∈ X′. Let W:X′ ⇒ F be
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defined by W(f ) = F \C(f ) such that the graph Gr(W) of W is closed in
X′ × F , where L(E,F ) is endowed with the topology of pointwise conver-
gence. Then the following two problems are equivalent:

(i) Find f ∈X′ such that ∀g ∈X′, ∃x ∈T (f ) with 〈g −f, x〉 /∈C(f ).

(ii) Find f ∈X′ such that ∀g ∈X′, ∀x ∈T (g), 〈g −f, x〉 /∈C(f ).

Proof. (i) ⇒ (ii). This is immediate from the C-pseudomonotonicity
of T .
(ii) ⇒ (i). Let f ∈X′ be a solution of (ii). Suppose by contradiction that f

is not a solution of (i). Then there exists g0 ∈X′ such that

∀x ∈T (f ), 〈g0 −f, x〉∈C(f ). (3.1)

Since f is a solution of (ii), we have, for each t ∈ (0,1),

〈tg0 + (1− t)f −f, xt〉 /∈C(f ) for all xt ∈T (f + t (g0 −f )).

Hence

〈g0 −f, xt〉 /∈C(f ) for all xt ∈T (f + t (g0 −f )). (3.2)

As T is generalized hemicontinuous, the multifunction H : [0,1]⇒F defined
by H(t)=〈g0 − f,T (f + t (g0 − f ))〉 is upper semicontinuous at 0+. It fol-
lows from (3.1) that

H(0)=〈g0 −f,T (f )〉⊂C(f ).

Observe that the closedness of Gr(W) implies that of W(f ) for every f ∈
X′. Thus C(f ) is open in F for every f ∈X′. Hence there exists t̄ ∈ (0,1)

such that

H(t)=〈g0 −f,T (f + t (g0 −f ))〉⊂C(f ) for all t ∈ (0, t̄),

which contradicts (3.2). This completes the proof.

Using Lemma 3.1, we first prove the following which is a multi-valued
version of (OVVI) in [5].

THEOREM 3.1. Let T :X′ ⇒ E be a C-pseudomonotone and generalized
hemicontinuous multifunction with T (f ) �= ∅ for all f ∈ X′. Let W : X′ ⇒ F

be defined by W(f ) = F \C(f ) such that the graph Gr(W) of W is closed
in X′ ×F , where L(E,F ) is endowed with the topology of pointwise conver-
gence. Let K ′ be a nonempty compact subset of X′. Assume that for each
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finite subset N ′ of X′, there exists a nonempty compact convex subset LN ′

of X′ containing N ′ such that for each f ∈ LN ′ \ K ′, there exists g ∈ LN ′

satisfying

〈g −f, x〉∈C(f ) f or some x ∈T (g).

Then (GOVVI) is solvable.

Proof. First note that L(E,F ) equipped with the topology of pointwise
convergence is a Hausdorff t.v.s. We define two multifunctions A,B:X′ ⇒X′

to be

A(f ):={g ∈X′ | ∃x ∈T (g), such that 〈g −f, x〉∈C(f )},
B(f ):={g ∈X′ | ∀x ∈T (f ), 〈g −f, x〉∈C(f )}.

The proof is organized in the following parts.

(i) Since T is C-pseudomonotone, we have A(f )⊂B(f ) for all f ∈X′.
(ii) For each f ∈X′, B(f ) is convex. Indeed, let g1 and g2 be in B(f ). For

all t ∈ [0,1] and x ∈T (f ), we have

〈tg1 + (1− t)g2 −f, x〉= t〈g1 −f, x〉+ (1− t)〈g2 −f, x〉∈C(f ),

which implies that tg1 + (1− t)g2 ∈B(f ). Hence B(f ) is convex.
(iii) Clearly B has no fixed point because 0 /∈C(f ) for all f ∈X′.
(iv) For each g ∈ X′, A−1(g) is open in X′. In fact, let {fλ} be a net in

(A−1(g))c convergent to f ∈ X′. Then g /∈ A(fλ) and hence for each
x ∈T (g),

〈g −fλ, x〉 /∈C(fλ).

Thus 〈g − fλ, x〉 ∈ W(fλ). Since (fλ, 〈g − fλ, x〉) ∈ Gr(W) and L(E,F )

is endowed with the topology of pointwise convergence, by virtue of
the closedness of Gr(W), we have (f, 〈g −f, x〉)∈Gr(W), that is, 〈g −
f, x〉 /∈C(f ) for every x ∈T (g). Hence g /∈A(f ), so f ∈ (A−1(g))c. This
shows that (A−1(g))c is closed, therefore A−1(g) is open in X′.

(v) By the given hypothesis, we know that for each finite subset N ′ of
X′, there exists a nonempty compact convex subset LN ′ of X′ contain-
ing N ′ such that for each f ∈ LN ′ \K ′, there exists g ∈ LN ′ satisfying
g ∈A(f ), hence LN ′ ∩A(f ) �=∅.

(vi) From (i)–(v), we see, by Lemma 2.1, there must be an f0 ∈K ′ such that
A(f0)=∅, namely,

〈g −f0, x〉 /∈C(f0) for any g ∈X′, x ∈T (g).
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It follows from Lemma 3.1 that f0 is a solution of (GOVVI). This com-
pletes the proof.

To obtain an application of Theorem 3.1, the following lemma is neces-
sary. For reader’s convenience, we provide a detailed proof.

LEMMA 3.2. Let E and F be normed spaces. Then E∗ = {g ◦ L | g ∈
F ∗ and L ∈ L(E,F )}, where E∗ and F ∗ denote the continuous dual spaces
of E and F , respectively.

Proof. It suffices to show that every continuous linear functional h∈E∗

can be represented by

h(x)=g ◦L(x) for all x ∈E,

where g ∈F ∗ and L∈L(E,F ). Let Kerh=M. Choose x0 ∈E with h(x0)=1
and y0 ∈F with ‖y0‖=1. Then

E =
⋃

α∈R

{αx0 +M}.

Put Q = {αy0 | α ∈ R} the one-dimensional subspace of F generated by y0.
We define a mapping L:E →Q by

L(αx0 +m)=αy0, where m∈M.

Clearly L is linear. Also define an isomorphism j :Q→R to be j (αy0)=α.
Then it is easy to check that h=j ◦L. This implies that L=j−1 ◦h:E →Q

is continuous. In addition, we may assume that L∈L(E,F ). By the Hahn–
Banach Theorem [3, Corollary 6.5, p. 81], there exists a continuous linear
functional g ∈F ∗, such that g(y)=j (y) for all y ∈Q and ‖g‖=‖j‖. There-
fore we have h=g ◦L, as desired. This completes the proof.

As an application of Theorem 3.1 in multi-valued settings, we shall prove
the existence of a solution of a generalized (VVI) in a normed space.

THEOREM 3.2. Let Y and Z be two normed spaces. Let X be a non-
empty convex subset of Y and C1:X ⇒ Z be a multifunction such that for
each x ∈X, C1(x) is a convex cone in Z with int C1(x) �= ∅ and C1(x) �=Z.
Let T1:X⇒L(Y,Z) be a C1-pseudomonotone and generalized hemicontinuous
multifunction with nonempty values. Let W1:X ⇒ Z be defined by W1(x) =
Z \−intC1(x) such that the graph Gr(W1) of W1 is weakly closed in X ×Z.
Assume that K is a nonempty weakly compact subset of X and for each finite
subset N of X, there exists a nonempty weakly compact convex subset LN of
X containing N such that for each x ∈LN\K, there exists y ∈LN satisfying
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〈s, y −x〉∈−intC1(x) for some s ∈T1(y).

Then there exists x0 ∈X such that

∀x ∈X, ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

Proof. We consider E = L(Y,Z) as the normed space of the continu-
ous linear operators between Y and Z with the usual norm, and F =
(Z, weak) as the Hausdorff locally convex topological vector space Z

endowed with the weak topology. Define a mapping φ:Y → L(E,F ) by
φ(x)=fx where fx(l)=〈l, x〉 for all l ∈E. This φ is linear and 1–1. More-
over, φ is a homeomorphism from (X,weak) onto φ(X)=X′ with the sub-
space topology of L(E,F ) equipped with the topology of pointwise con-
vergence. In fact, let {xi} be a net in X weakly convergent to x ∈X. Then
for each l ∈ E = L(Y,Z), 〈l, xi〉 ⇀ 〈l, x〉 because l: (Y, weak) → (Z, weak)

is continuous (see Conway [3, Theorem 1.1, p. 171]). This implies that ∀l ∈
E, fxi

(l) → fx(l) in F . Thus fxi
→ fx in L(E,F ), which means that φ is

continuous. Conversely, let {fxi
} be a net in X′ convergent to fx ∈X′. Then

for each l ∈ E, fxi
(l) → fx(l) in F , hence 〈l, xi〉 ⇀ 〈l, x〉. So 〈w∗ ◦ l, xi〉 →

〈w∗ ◦ l, x〉 in R for all l ∈L(Y,Z) and w∗ ∈Z∗ the dual space of Z. Thus,
by Lemma 3.2, we have

〈y∗, xi〉→〈y∗, x〉 ∀y∗ ∈Y ∗.

This shows that xi ⇀x in X. Therefore φ−1 is continuous.
Now we define T :X′ ⇒E, C:X′ ⇒F and W :X′ ⇒F as follows:

T (fx):=T1(x),

C(fx):=− intC1(x),

W(fx):=W1(x),

where int C1(x) is the interior of C1(x) in the normed space Z. Then
0 /∈C(fx) because intC1(x) is a proper convex cone of Z. The proof is orga-
nized in the following parts.

(i) If D is a weakly compact subset of X, then φ(D) is compact in
L(E,F ) because φ is a homeomorphism.

(ii) C1-pseudomonotonicity of T1 implies the C-pseudomonotonicity of T .
In fact, for any fx, fy ∈X′ and s ∈T (fx)=T1(x),

〈fy −fx,s〉 /∈C(fx)⇒〈s,y−x〉 /∈−intC1(x)

⇒〈t,y−x〉 /∈−intC1(x) for all t ∈T1(y)=T (fy)

⇒〈fy −fx,t〉 /∈C(fx) for all t ∈T (fy).
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(iii) The generalized hemicontinuity of T1 amounts to that of T . Actually,
for any fx, fy ∈X′ and α ∈ [0,1],

α �→ 〈fy −fx, T (fx +α(fy −fx))〉
=〈T1(x +α(y −x)), y −x〉

is upper semicontinuous at 0+.
(iv) W has a closed graph in X′ ×F , where L(E,F ) is endowed with the

topology of pointwise convergence. Indeed, let {fxi
} be a net in X′ con-

vergent to fx ∈ X′. Clearly, xi ⇀ x in X because φ is a homeomor-
phism. Let wi ∈W(fxi

) such that wi →w in F . The weak closedness of
the graph Gr(W1) of W1 in X ×Z and the equivalence W(fx)=W1(x)

yield that (x,w)∈Gr(W1), i.e., w ∈W1(x), hence w ∈W(fx).
(v) Put K ′ = φ(K). By the hypothesis and (i), it can be readily checked

that for each finite subset N ′ of X′, there exists a nonempty compact
convex subset LN ′ of X′ containing N ′ such that for each fx ∈LN ′\K ′,
there exists fy ∈LN ′ satisfying

〈fy −fx, s〉∈C(fx) for some s ∈T (fy).

It follows directly from Theorem 3.1 that there exists fx0 ∈X′ such that for
each fx ∈ X′, there is t ∈ T (fx0) with 〈fx − fx0, t〉 /∈ C(fx0). Therefore, there
exists x0 ∈X such that

∀x ∈X, ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

This completes the proof.

REMARK 3.1. Theorem 3.2 is a noncompact generalization of Konnov
and Yao [9, Theorem 3.1] in normed spaces (not necessarily Banach spaces)
without assuming the convex cone C1(x) being closed.

Now we are interested in (GOVVI) concerned with the upper semiconti-
nuity of T instead of pseudomonotonicity and hemicontinuity. To this end,
we replace the topology of pointwise convergence by that of bounded con-
vergence on L(E,F ).

THEOREM 3.3. Suppose that L(E,F ) is endowed with the topology of
bounded convergence. Let T :X′ ⇒ E be an upper semicontinuous multifunc-
tion such that T (f ) is a nonempty compact subset of E for all f ∈X′, and
the range T (X′) is contained in a compact subset of E. Let W :X′ ⇒ F be
defined by W(f ) = F \ C(f ) such that the graph Gr(W) of W is closed in
X′ ×F . Let K ′ be a nonempty compact subset of X′. Assume that for each
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finite subset N ′ of X′, there exists a nonempty compact convex subset LN ′ of
X′ containing N ′ such that for each f ∈LN ′\K ′, there exists g∈LN ′ satisfying

〈g −f, x〉∈C(f ) f or all x ∈T (f ).

Then (GOVVI) is solvable.

Proof. We define a multifunction B:X′ ⇒X′ to be

B(f ):={g ∈X′ | ∀x ∈T (f ), 〈g −f, x〉∈C(f )}.

(i) As seen in the proof of Theorem 3.1, B(f ) is convex for all f ∈ X′

and B has no fixed point.
(ii) For each g ∈ X′, B−1(g) is open in X′. In fact, let {fλ} be a net in

(B−1(g))c convergent to f ∈X′. Then g /∈B(fλ) so that there exists an
xλ ∈T (fλ) satisfying

〈g −fλ, xλ〉 /∈C(fλ).

Thus 〈g −fλ, xλ〉∈W(fλ). Since T (X′) is contained in a compact sub-
set, we may assume without loss of generality that xλ → x for some
x ∈E. Observe that Gr(T ) is closed, so x ∈ T (f ) because T is upper
semicontinuous and compact-valued. Since (fλ, 〈g − fλ, xλ〉) ∈ Gr(W)

and L(E,F ) is endowed with the topology of bounded convergence,
by virtue of the closedness of Gr(W), we have (f, 〈g −f, x〉)∈Gr(W),
that is, 〈g − f, x〉 /∈ C(f ). Hence g /∈ B(f ), i.e., f ∈ (B−1(g))c. This
shows that (B−1(g))c is closed, therefore B−1(g) is open in X′.

(iii) By the hypothesis, we know that for each finite subset N ′ of X′, there
exists a nonempty compact convex subset LN ′ of X′ containing N ′

such that for each f ∈LN ′ \K ′, there exists g∈LN ′ satisfying g∈B(f ),
hence LN ′ ∩B(f ) �=∅.

(iv) From (i) to (iii), we see, by Lemma 2.1 in case of A=B, there must be
an f0 ∈K ′ such that B(f0)=∅. This means that for any g ∈X′, there
exists an x ∈T (f0) such that

〈g −f0, x〉 /∈C(f0).

Therefore f0 is a solution of (GOVVI). This completes the proof.

As a direct consequence of Theorem 3.3, we obtain the following.

THEOREM 3.4. Let Y and Z be two normed spaces. Let X be a non-
empty convex subset of Y and C1:X ⇒ Z be a multifunction such that for
each x ∈X, C1(x) is a convex cone in Z with int C1(x) �= ∅ and C1(x) �=Z.
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Let T1:X ⇒L(Y,Z) be an upper semicontinuous multifunction with nonemp-
ty compact values and the range T1(X) be contained in a compact subset of
L(Y,Z), where L(Y,Z) is the normed space of the continuous linear oper-
ators between Y and Z with the usual norm. Let W1:X ⇒ Z be defined by
W1(x)=Z\−intC1(x) such that the graph Gr(W1) of W1 is closed in X×Z.
Assume that K is a nonempty compact subset of X and for each finite subset
N of X, there exists a nonempty compact convex subset LN of X containing
N such that for each x ∈LN \K, there exists y ∈LN satisfying

〈s, y −x〉∈−intC1(x) for all s ∈T1(x).

Then there exists x0 ∈X such that

∀x ∈X, ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

Proof. We consider E =L(Y,Z) as the normed space of the continuous
linear operators between Y and Z with the usual norm, and F = (Z,‖ · ‖).
Define a mapping φ:Y →L(E,F ) by φ(x)=fx , where fx(l)=〈l, x〉 for all
l ∈E. This φ is linear and 1–1. In fact, it is easy to verify that φ is an iso-
metric imbedding into L(E,F ) by the proof of Lemma 3.2. Let X′ =φ(X)

and K ′ =φ(K). Then φ:X→X′ is a homeomorphism. We define T :X′ ⇒E,
C:X′ ⇒F and W :X′ ⇒F to be the same as in the proof of Theorem 3.2.
The proof is organized in the following parts.

(i) T :X′ ⇒E is an upper semicontinuous multifunction such that T (f ) is
a nonempty compact subset of E for all f ∈X′, and the range T (X′)
is contained in a compact subset of E. This is immediate from the fact
that T =T1 ◦φ−1 and the given hypothesis on T1.

(ii) The graph Gr(W) of W is closed in X′ ×F , where L(E,F ) is endowed
with the topology of bounded convergence. Indeed, let {fxi

} be a net in
X′ convergent to fx ∈X′, with respect to the topology of bounded con-
vergence in L(E,F ). Clearly the norm topology and that of bounded
convergence on L(E,F ) coincide. Let wi ∈ W(fxi

) = W1(xi) such that
wi → w in F . Since φ is a homeomorphism, φ−1(fxi

) = xi → x =
φ−1(fx). Because the graph Gr(W1) of W1 is closed in X×Z, we have
w ∈W1(x)=W(fx). This implies that Gr(W) is closed in X′ ×F .

(iii) By the hypothesis, it can be readily checked that for each finite sub-
set N ′ of X′, there exists a nonempty compact convex subset LN ′ of
X′ containing N ′ such that for each fx ∈LN ′ \K ′, there exists fy ∈LN ′

satisfying

〈fy −fx, s〉∈C(fx) for all s ∈T (fx).
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It follows directly from Theorem 3.3 that there exists fx0 ∈X′ such that for
each fx ∈ X′, there is t ∈ T (fx0) with 〈fx − fx0, t〉 /∈ C(fx0). Therefore, there
exists x0 ∈X such that

∀x ∈X, ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

This completes the proof.

4. Generalized Vector Quasi-Variational Inequality with Operator Solutions

As an application of Lemma 2.2, we first derive an existence of solutions
for (GOQVVI) as follows.

THEOREM 4.1. Let X′ be a nonempty convex subset of L(E,F ), A:X′ ⇒
X′ a multifunction such that each A(f ) is nonempty convex and each A−1(g)

is open in X′, and cl A:X′ ⇒X′ is upper semicontinuous. Let T :X′ ⇒E be a
multifunction such that T (f ) is nonempty for all f ∈X′. Let W :X′ ⇒F be
defined by W(f ) = F \ C(f ) such that the graph Gr(W) of W is closed in
X′ ×F .
Furthermore, assume that L(E,F ) is endowed with a topology having the fol-
lowing convergence condition :

if (fλ)λ∈� → f and xλ ∈ T (fλ), then there exist x ∈ T (f ) and subnets
(xµ), (fµ) of (xλ), (fλ), respectively, such that xµ →x and 〈fµ, xµ〉→〈f, x〉.

Then (GOQVVI) is solvable.

Proof. We first define a multifunction P :X′ ⇒X′ to be

P(f ):={g ∈X′ | ∀x ∈T (f ), 〈g −f, x〉∈C(f )}.
The proof is organized in the following parts.

(i) Clearly P(f ) is convex for all f ∈X′ and P has no fixed point.
(ii) For each g ∈X′, P −1(g) is open in X′. In fact, let {fλ}λ∈� be a net in

(P −1(g))c convergent to f ∈X′. Then g /∈P(fλ) for all λ∈� and hence
for some xλ ∈ T (fλ), we have 〈g − fλ, xλ〉 /∈ C(fλ); thus 〈g − fλ, xλ〉 ∈
W(fλ).
By the convergence condition, there exist x ∈ T (f ) and sub-
nets (xµ), (fµ) of (xλ), (fλ), respectively, such that xµ → x and
〈fµ, xµ〉 → 〈f, x〉. Since (fµ, 〈g − fµ, xµ〉) ∈ Gr(W), by virtue of
the closedness of Gr(W), we have (f, 〈g − f, x̄〉) ∈ Gr(W), that is,
〈g − f, x̄〉 /∈ C(f ). Hence g /∈ P(f ), so f ∈ (P −1(g))c. This shows that
(P −1(g))c is closed, therefore P −1(g) is open in X′.

Hence, all hypotheses of Lemma 2.2 are satisfied so that there must be
an f0 ∈ X′ such that fo ∈ cl A(f0) and A(f0) ∩ P(f0) = ∅, namely, for all
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f ∈A(f0), there exists an x0 ∈T (f0) such that

〈f −f0, x0〉 /∈C(f0).

Therefore, f0 is a solution of (GOQVVI). This completes the proof.

REMARK 4.1. Note that the convergence condition in Theorem 4.1 is a
paticular case of that of Khanh and Luu [8, Theorem 2.1]. Actually the
convergence condition above is a weaker one.

As an immediate consequence of Theorem 4.1, we have the following.

COROLLARY 4.1. Let X′ be a nonempty compact convex subset of L(E,F ),
where L(E,F ) is endowed with the topology of bounded convergence. Let
A:X′ ⇒X′ be the same as in Theorem 4.1. Let T :X′ ⇒E be an upper semi-
continuous multifunction such that T (f ) is nonempty compact for all f ∈X′.
Let W :X′ ⇒F be defined by W(f )=F\C(f ) such that the graph Gr(W) of
W is closed in X′ ×F . Then (GOQVVI) is solvable.

In compact cases, we can derive the following existence theorem for solu-
tions of generalized quasi-variational inequality from Corollary 4.1.

THEOREM 4.2. Let Y and Z be normed spaces. Let X be a nonempty com-
pact convex subset of Y and C1:X⇒Z be a multifunction such that for each
x ∈ X, C1(x) is a convex cone in Z with int C1(x) �= ∅ and C1(x) �= Z. Let
A1:X⇒X be a multifunction such that for each x, y ∈X, A1(x) is nonemp-
ty convex, A1

−1(y) is open in X, and cl A1:X ⇒X is upper semicontinuous.
Let T1:X⇒L(Y,Z) be an upper semicontinuous multifunction with nonempty
compact values where L(Y,Z) is the normed space of the continuous linear
operators between Y and Z with the usual norm. Let W1:X⇒Z be defined by
W1(x)=Z \−intC1(x) such that the graph Gr(W1) of W1 is closed in X×Z.
Then there exists x0 ∈X such that x0 ∈ cl A1(x0) and

∀x ∈A1(x0), ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

Proof. Following the proof of Theorem 3.4, we first assume that T :X′ ⇒
E, C:X′ ⇒ F and W :X′ ⇒ F to be defined under the same circumstances
as in the proof of Theorem 3.4. Moreover, the multifunction A:X′ ⇒X′ is
defined as follows:

A(fx)=φ(A1(x)) for all fx ∈X′.

The proof is organized in the following parts.
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(i) As is well-known, the topology of bounded convergence on L(E,F )

coincides with the usual norm topology on L(E,F ) in this case. So we
see that X′ = φ(X) is a compact convex subset of the normed space
L(E,F ) because φ is a homeomorphism.

(ii) For each fx, fy ∈ X′,A(fx) is nonempty convex, A−1(fy) is open in
X′, and cl A:X′ ⇒X′ is upper semicontinuous. Indeed, clearly A(fx) is
nonempty convex because φ is linear. In addition, we have

A−1(fy)={fx ∈X′ |fy ∈A(fx)}
=φ({x ∈X |y ∈A1(x)})
=φ(A1

−1(y)).

This means that A−1(fy) is open in X′. Being φ a homeomorphism, it
should hold

φ ◦ (cl A1)= (cl A)◦φ.

Hence cl A=φ ◦ (cl A1)◦φ−1. The upper semicontinuity of cl A directly
comes from that of cl A1.

(iii) T :X′ ⇒ E is an upper semicontinuous multifunction such that T (fx)

is a nonempty compact subset of E for all fx ∈X′. This is immediate
from the fact that T =T1 ◦φ−1 and the given hypothesis on T1.

(iv) By the step (ii) of the proof of Theorem 3.4, W :X′ ⇒ F defined by
W(fx)=F \C(fx) has a closed graph in X′ ×F .

Thus the whole assumptions of Corollary 4.1 are satisfied so that there
exists fx0 ∈X′ such that fx0 ∈ cl A(fx0) and

∀fx ∈A(fx0), ∃t ∈T (fx0) with 〈fx −fx0, t〉 /∈C(fx0).

Therefore, there exists x0 ∈X such that x0 ∈ cl A1(x0) and

∀x ∈A1(x0), ∃t ∈T1(x0) with 〈t, x −x0〉 /∈−intC1(x0).

This completes the proof.
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